Active Learning for Multi-Task Adaptive Filtering
نویسندگان
چکیده
In this paper, we propose an Active Learning (AL) framework for the Multi-Task Adaptive Filtering (MTAF) problem. Specifically, we explore AL approaches to rapidly improve an MTAF system, based on Dirichlet Process priors, with minimal user/task-level feedback. The proposed AL approaches select instances for delivery with a two-fold objective: 1) Improve future task-specific system performance based on feedback received on delivered instances for that task, 2) Improve the future overall system performance, thereby benefiting other tasks in the system, based on feedback received on delivered instances for a particular task. Current AL approaches focus only on the first objective. For satisfying both goals, we define a new scoring function called Utility Gain to estimate the perceived improvements in task-specific and global models. In our experiments on standard benchmark datasets, we observed that global AL approaches that additionally take into account the potential benefit of feedback to other tasks in the system performed better than the task-specific approach that focused only the benefit of the current task.
منابع مشابه
Multi-task Learning for Recommender Systems
This paper focuses on exploring personalized multi-task learning approaches for collaborative filtering towards the goal of improving the prediction performance of rating prediction systems. These methods first specifically identify a set of users that are closely related to the user under consideration (i.e., active user), and then learn multiple rating prediction models simultaneously, one fo...
متن کاملEmpirical Mode Decomposition based Adaptive Filtering for Orthogonal Frequency Division Multiplexing Channel Estimation
This paper presents an empirical mode decomposition (EMD) based adaptive filter (AF) for channel estimation in OFDM system. In this method, length of channel impulse response (CIR) is first approximated using Akaike information criterion (AIC). Then, CIR is estimated using adaptive filter with EMD decomposed IMF of the received OFDM symbol. The correlation and kurtosis measures are used to sel...
متن کاملApplying SIGMA to the TREC-7 Filtering Track
This paper presents the research method and results from applying SIGMA (System of Information Gathering Market-based Agents) to the adaptive filtering task of the TREC-7 Filtering Track. Our work in SIGMA is based on the research hypothesis that a multi-agent learning approach, where each agent learns a local model for information filtering, performs better than a single-agent learning approac...
متن کاملExploration and Exploitation in Adaptive Filtering Based on Bayesian Active Learning
In the task of adaptive information filtering, a system receives a stream of documents but delivers only those that match a person’s information need. As the system filters it also refines its knowledge about the user’s information needs based on relevance feedback from the user. Delivering a document thus has two effects: i) it satisfies the user’s information need immediately, and ii) it help...
متن کاملAdaptive Filtering Strategy to Remove Noise from ECG Signals Using Wavelet Transform and Deep Learning
Introduction: Electrocardiogram (ECG) is a method to measure the electrical activity of the heart which is performed by placing electrodes on the surface of the body. Physicians use observation tools to detect and diagnose heart diseases, the same is performed on ECG signals by cardiologists. In particular, heart diseases are recognized by examining the graphic representation of heart signals w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010